Structural Studies of Cs-K-Bi Mixed Chlorides Relation to the Crystal Structures of A_2BMX_6 , A_3MX_6 , and A_2MX_6

FARIDA BENACHENHOU, GAËTAN MAIRESSE,* GUY NOWOGROCKI, and DANIEL THOMAS

Laboratoire de Cristallochimie et Physicochimie du Solide (UA CNRS 452), Ecole Nationale Supérieure de Chimie, B.P. 108 59652 Villeneuve d'Ascq Cedex, France

Received February 18, 1986

The room-temperature crystal structures of Cs₃BiCl₆(I) and CsK₂BiCl₆(II) have been determined from X-ray single-crystal data. These compounds are both monoclinic, space group C2/c, with eight formula units per cell and cell parameters a = 27.017(17), b = 8.252(8), c = 13.121(10) Å, $\beta = 99.70(11)^{\circ}$ (I), a = 25.653(13), b = 7.799(5), c = 12.874(9) Å, $\beta = 99.24(8)^{\circ}$ (II). The crystal structures have been refined to final *R* values of 0.069(I) and 0.044(II) from 1706(I) and 2008(II) independent reflections and 93 variable parameters. The BiCl₆ octahedra are slightly distorted (average $d_{Bi-CI} = 2.699$ Å) and the alkaline cations are coordinated with eleven or eight chlorine atoms. These structures are better described using the notion of "layers of close-packed octahedra" and can therefore be easily compared with the A_2BMX_6 (elpasolite type), A_3MX_6 (cryolite type), and A_2MX_6 (K₂PtCl₆ type) crystal structures. In these compounds, the "layers" of isolated octahedral MX_6 entities (X = F, Cl, Br, O) define "tetrahedral" and "octahedral" holes, entirely or partially occupied by the *A* and/or *B* cations. © 1986 Academic Press, Inc.

Introduction

Recent structural and physicochemical investigations of A_2BMCl_6 mixed chlorides (where A and B are alkaline metals and M a trivalent element) have disclosed ferroelastic-type phase transitions at low (1) and high (2) temperature, as well as distortions of the cubic elpasolite structure (3). In this last work, it was shown from powder diffraction data that for almost all compositions, the room-temperature phase is strongly distorted, as compared to the highsymmetry, high-temperature phase. Only in the case of the Cs_2KBiCl_6 composition is the ideal elpasolite structure retained down to room temperature.

The phase-transition diagram of the $Cs_{3-x}K_x$ BiCl₆ ($0 \le x \le 3$) system has been recently reported (4). In the high-temperature region, a continuous solid solution with the cubic *Fm3m* crystal structure extends throughout the whole system. Two (x > 1) or three (x < 1) phase transitions occur as the temperature is lowered (except for x = 1: Cs₂KBiCl₆ composition) (Fig. 1), some of these transitions probably being of the ferroelastic type (4-6). Cs₃BiCl₆ presents, at temperatures lower than $T_1 = 120^{\circ}C$ (phase I), potential physical properties ac-

^{*} To whom correspondence should be addressed.

FIG. 1. Binary diagram Cs₃BiCl₆-K₃BiCl₆.

cording to the observed remanent polarization, although this phenomenon does not seem to have a ferroelectric origin (6).

The only available structural data on $Cs_{3-x}K_{x}BiCl_{6}$ phases deal with $Cs_{2}KBiCl_{6}$ (3, 5): this compound is isostructural with Cs₂NaBiCl₆, which was assigned cubic Fm3m symmetry from single-crystal data (7). Clearly, more work is needed to understand the evolution of the structures and to establish some structural relationships as the composition or temperature is changed. The present paper deals with the first aspect of this question: it describes the structures of crystals with compositions corresponding to x = 0 (phase I) and x = 2(phase II'), which are stable at room temperature, and symmetrically located on each side of Cs₂KBiCl₆.

Experimental

A transport method was initially considered to take advantage of the large partial pressure of BiCl₃ at high temperature. Indeed, heating in a temperature gradient an evacuated sealed quartz tube containing mixture of chlorides led to the deposition of well shaped single crystals. Unfortunately, they stuck strongly to the quartz wall and could not be recovered without damage.

An alternative method was therefore used: slow cooling $(5^{\circ}C \cdot hr^{-1})$ of a small amount (~500 mg) of a mixture of chlorides, from the congruent melting point to the ambient temperature, resulted in a thin transparent layer, from which small flakes could be recovered. The selected samples were roughly triangular with maximum lengths of about 150 and 250 μ m for Cs₃ BiCl₆ and CsK₂BiCl₆, respectively.

Structure Determination

Preliminary investigations of Cs_3BiCl_6 and CsK_2BiCl_6 had led to the hypothesis of a triclinic Pl unit cell (5), but the actual symmetry was proved to be C2/c from single-crystal studies (*hkl* with h + k = 2n and *hol* with l = 2n). X-Ray patterns and the diffractometer data indicated that the Cs_3 BiCl₆ crystal was of poor quality: it was twinned and composed of two individuals with slightly different orientations (about 0.1° in θ , χ , φ). This situation is probably due to ferroelastic transitions occurring during the cooling (4). Despite these troubles, we managed to collect the reflections from the bigger individual, which was almost twice the volume of the other one. In addition, some superstructure reflections have been detected on Weissenberg patterns; taking them into account led to doubling of the unit cell. However, in view of their very low intensity (which was never larger than 1.5 times their standard deviation), they were not included in the refinement process. With the CsK₂BiCl₆ single crystal, neither twinning nor superstructure reflections were observed.

Data collection was made using the Philips PW1100 four circle automated diffractometer of the "Centre Commun de Mesure de l'Université des Sciences et Techniques de Lille." The crystallographic data are given in Table I. Lattice parameters and their standard deviations were determined by least-squares refinement of the setting angles of 25 carefully centered reflections. The densities were not measured: from comparison with the cubic, elpasolite phase Cs_2KBiCl_6 , we assumed the existence of eight formula units per unit cell. The parameters of these compounds suggest that they are isomorphic.

The crystal structures were solved by the heavy atom method: Patterson synthesis, successive Fourier difference maps and least-squares refinements in the centrosymmetric space group C2/c. Refinement of the atomic parameters and isotropic thermal factors for all of the atoms led to the values R = 0.166 and R = 0.152 for Cs₃BiCl₆ and CsK₂BiCl₆, respectively. At this step, absorption corrections were applied using the method described recently by Walker and Stuart (8), by means of a program written by one of us (9). The knowledge of crystal dimensions and linear absorption coefficients is not required in this method, which

TABLE I	BLE I
---------	-------

EXPERIMENTAL DATA AND STRUCTURE REFINEMENT PARAMETERS FOR Cs3BiCl6 AND CsK2BiCl6

Formula	CSBiCL	CsK_BiCL
System	Monoclinic	Monoclinic
Space group	C2/c	C2/c
Lattice parameters	a = 27.017 (17)	a = 25.653(13)
measured at 294	h = 8.257 (8)	b = 7.799(5)
K with 25 hkl	c = 13.121.(10)	c = 12.874(9)
$5^\circ < \theta < 12^\circ$	B = 99.70(11)	$\beta = 99.24(8)$
Volumes (Å ³)	V = 2883	V = 2542
Multiplicity	Z = 8	Z = 8
Calculated density	$\rho = 3.78 \text{ g} \cdot \text{cm}^{-3}$	$\rho = 3.31 \text{g} \cdot \text{cm}^{-3}$
Data collection	w-20 scan Philips PW 11	100 diffractometer
technique	MoK $\overline{\alpha}$ radiation $\lambda = 0.7$	7107 Å
Scan speed	0.06° s ⁻¹	0.03° s ⁻¹
Scan width	1.2°	1.2°
Standard reflections	622, 622, 622	311, 602, 511
Periodicity	60 mn	120 mn
Recorded reflections	8964	4680
	(within a $2 < \theta < 24^{\circ}$	(within a $2 < \theta < 25^{\circ}$
	sphere)	half sphere)
Observed reflections		
(l > 3l)	6128	3727
Independent reflec-		
tions	1706	2008
R merging factor	0.114	0.050
Absorption coeffi-		
cient	$\mu = 203 \text{ cm}^{-1}$	$\mu = 179 \text{ cm}^{-1}$
Absorption correc-		
tion	Walker and Stuart meth	od (DIFABS)
Refined parameters	93	93
Reliability factors	$R \approx 0.069 Rw = 0.083$	R = 0.044 Rw = 0.049
	(w = 1)	(w = 1)

proved to be very useful with badly shaped crystals containing heavy atoms. Following absorption corrections, R indexes dropped to 0.098 for Cs₃BiCl₆ and 0.073 for CsK₂BiCl₆; use of anisotropic thermal coefficients led to final R values of 0.069 (Rw =0.083) for Cs₃BiCl₆, and R = 0.044 (Rw =0.049) for CsK_2BiCl_6 (with w = 1 for all reflections). In the last cycle, the maximum parameter shift was lower than 10^{-3} times the corresponding estimated standard deviation. The final Fourier difference maps were featureless. The scattering factors for Cs^+ , K^+ , Bi^{3+} , and Cl^- were taken from Cromer and Waber (10), with anomalous dispersion corrections according to Cromer and Libermann (11). The positional parameters are listed in Table II.

TA	RI	E	Π
		-	

ATOMIC COORDINATES AND ANISOTROPIC THERMAL PARAMETERS^{a,b}

	Atom	<i>x</i>	у	z	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃	Beq
Cs ₃ BiCl ₆	Bi(1)	4	ł	+	29(3)	26(1)	23(1)	-3(1)	7(2)	2(1)	2.0
	Bi(2)	0	7835(2)	1	25(3)	26(1)	20(1)	0	7(2)	0 Ó	1.9
	Cs(1)	496 (1)	7444(4)	9317(2)	57(3)	82(2)	53(2)	15(1)	19(2)	24(2)	5.0
	Cs(2)	1614(1)	8133(3)	2982(2)	36(3)	38(1)	52(2)	-1(1)	12(2)	-3(1)	3.3
	Cs(3)	3462(1)	1863(3)	8546(2)	39(3)	33(1)	41(2)	3(1)	5(2)	-3(1)	3.0
	Cl(1)	2492(3)	3890(11)	6871(7)	43(3)	40(5)	35(5)	-2(4)	10(3)	-4(4)	3.1
	Cl(2)	3235(2)	4548(13)	4639(8)	72(7)	54(6)	40(6)	-29(6)	23(5)	-3(5)	4.4
	Cl(3)	3269(4)	549(14)	5813(8)	65(7)	56(6)	46(6)	26(6)	9(5)	12(5)	4.4
	Cl(4)	572(4)	5536(12)	1815(8)	51(7)	46(6)	47(6)	9(4)	16(5)	-6(5)	3.8
	Cl(5)	-583(4)	7739(16)	641(7)	51(7)	90(8)	27(5)	3(6)	3(3)	-2(5)	4.4
	Cl(6)	576(4)	10263(12)	1928(9)	39(7)	47(6)	58(7)	1(4)	16(5)	17(5)	3.8
CsK ₂ BiCl ₆	Bi(1)	ł	4	$\frac{1}{2}$	26(1)	29(1)	29(1)	-2(1)	6(1)	5(1)	2.21
	Bi(2)	0	7786(1)	1 4	26(1)	22(1)	22(1)	0	8(1)	0	1.84
	Cs	512(1)	7363(1)	9307(1)	42(1)	52(1)	43(1)	5(1)	8(1)	11(1)	3.61
	K(1)	1622(2)	8129(5)	3004(3)	39(3)	36(2)	72(2)	5(1)	8(2)	4(2)	3.9
	K(2)	3432(2)	1906(5)	8756(3)	45(3)	35(2)	63(2)	11(1)	18(2)	-3(1)	3.8
	Cl(1)	2503(2)	3906(6)	6939(6)	62(3)	47(2)	34(2)	9(1)	15(2)	-7(2)	3.8
	Cl(2)	3275(2)	4665(7)	4708(4)	52(3)	63(3)	75(3)	6(2)	10(3)	25(2)	5.0
	Cl(3)	3267(2)	274(7)	5771(5)	58(3)	62(3)	87(4)	5(2)	8(3)	35(3)	5.4
	Cl(4)	643(2)	5405(6)	1845(3)	55(3)	46(2)	43(2)	5(1)	8(1)	-8(2)	3.8
	Cl(5)	-589(2)	7653(6)	600(3)	42(3)	61(3)	31(2)	1(1)	2(1)	-1(2)	3.5
	Cl(6)	642(2)	10310(5)	1991(4)	39(3)	36(3)	56(2)	-11(1)	18(1)	13(2)	3.4

^a Atomic parameters $\times 10^4$ and vibrational coefficients $\times 10^3$.

^b The anisotropic thermal parameters are relative to $T = \exp[-2\pi^2(h^2a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} + 2hka^*b^*U_{12} + 2hla^*c^*U_{13} + 2klb^*c^*U_{23})].$

The noncentrosymmetric C2 space group was also checked, but no significant improvement was observed in the R values. Furthermore, anisotropic thermal coefficients for two of the Cl atoms became negative, indicating correlation effects; thus both structures are described in the C2/cspace group.

The higher R value for Cs₃BiCl₆, compared with CsK₂BiCl₆, is likely due to the poor quality of the crystal, as mentioned previously. Furthermore, since superstructure reflections have been neglected, atomic coordinates for Cs₃BiCl₆ describe a "mean structure" (probably phase II) and not the actual one (phase I). The importance of this superstructure must not be underestimated: since the mean structure (phase II) is centrosymmetric, the remanent polarization at $T < T_1$ (phase I) on one hand, and the dielectric anomalies at T_1 on the other hand (6), may be related to the existence and the disappearance of this superstructure, respectively.

Atomic parameters are very close in these structures (Table II), confirming that these phases are isostructural. Thermal motion factors for K and Cs in CsK₂BiCl₆ (Table II) were refined to reasonable values, in agreement with their ordered distribution.

Structural Results

The characteristic bond lengths and angles are reported in Table III. As in a number of chlorides, the $6s^2$ nonbonding pair of

91.6(3)

86.7(3)

88.4(2)

89.9(2)

94.8(2)

ESDs IN Cs3BiCl ₆ and CsK ₂ BiCl ₆						
	Cs ₃ BiCl ₆	CsK2BiCl6				
Bi(1)-Cl(1)	2.713(9)	2.725(4)				
Bi(1)-Cl(2)	2.709(8)	2.681(5)				
Bi(1)-Cl(3)	2.702(11)	2.691(5)				
Bi(2)-Cl(4)	2.695(11)	2.707(5)				
Bi(2) - Cl(5)	2.672(9)	2.663(4)				
Bi(2)-Cl(6)	2.719(11)	2.714(5)				
	(2.702)	(2.697)				
Cl(1)-Bi(1)-Cl(2)	90.7(5)	89.0(3)				

91.0(5)

84.4(5)

87.6(5)

92.3(5)

92.7(6)

Cl(1)-Bi(1)-Cl(3)

Cl(2)-Bi(1)-Cl(3)

Cl(4) - Bi(2) - Cl(5)

Cl(4) - Bi(2) - Cl(6)

Cl(5)-Bi(2)-Cl(6)

TABLE III Intraanionic Distances (Å) and Angles (°) with ESDs in Cs3BiCl6 and CsK2BiCl6

Bi³⁺ does not induce a significant distortion of the octahedral symmetry in BiCl₆³⁻: the angles are close to 90° and the Bi–Cl distances range from 2.672(11) to 2.719(11) Å and from 2.663(5) to 2.725(5) Å in Cs₃BiCl₆ and CsK₂BiCl₆, respectively. These values are in fair agreement with the accurate distance of 2.676(2) Å recently calculated in Cs₂NaBiCl₆ (12).

The anionic framework is built up of two kinds of BiCl₆ octahedra exhibiting differ-

ent orientations (Fig. 2). The coordination polyhedra of Cl atoms around the alkaline cations are quite irregular in both structures: in Cs₃BiCl₆, Cs(1) is surrounded by 11Cl atoms (as Cs in CsK₂BiCl₆), while Cs(2) and Cs(3) are surrounded by 8 Cl atoms (as K(1) and K(2) in CsK₂BiCl₆), (Table IV). The Cs · · · Cl distances range from 3.37(1) to 4.28(1) Å in Cs₃BiCl₆, and from 3.508(6) to 4.119(5) Å in CsK₂BiCl₆ (compared with 3.820(2) Å in Cs₂NaBiCl₆(12)); the K · · · Cl distances range from 2.996(7) to 4.006(7) Å.

It is worthwhile to notice that, starting from the ideal cubic phase Cs_2KBiCl_6 , the same deformation occurs when substituting K by Cs (Cs₃BiCl₆) or Cs by K (CsK₂BiCl₆). This behavior may be due to the fact that these crystal compositions are "equidistant" from the cubic compound.

According to the solubility diagram (13), Cs_3BiCl_6 can also be prepared from an hydrochloric solution (14% in mass) saturated with a 3CsCl/1BiCl₃ mixture at 25°C. Indeed, slow evaporation provided colorless platelet-shaped single crystals. An X-ray diffraction study disclosed an orthorhombic symmetry, space group *Pnma*. This result suggested that this phase is very likely iso-

FIG. 2. Perspective drawing of CsK_2BiCl_6 (monoclinic C2/c) showing the numbering scheme. Thermal ellipsoids are drawn at the 50% probability level.

TABLE IV CATIONIC SURROUNDINGS WITH ESDS IN CS3BiCl6 AND CSK2BiCl6 (Å)

		Cs ₃ BiCl ₆		CsK2BiCl6
Cs(1)-Cl(4)	1/001	3.61(1)	Cs	3.573(4)
Cs(1)-Cl(6)	2/021	3.61(1)		3.642(5)
Cs(1)-Cl(5)	1/001	3.64(1)		3.508(6)
Cs(1)-Cl(6)	4/020	3.70(1)		3.552(5)
Cs(1) - Cl(3)	7/001	3.71(1)		3.546(6)
Cs(1)-Cl(2)	7/001	3.88(1)		3.640(5)
Cs(1)-Cl(4)	2/011	3.89(1)		3.772(5)
Cs(1)-Cl(5)	2/021	3.98(1)		3.893(5)
Cs(1)-Cl(6)	1/001	4.12(1)		4.119(5)
Cs(1)-Cl(4)	4/010	4.13(1)		3.894(5)
Cs(1)-Cl(5)	2/011	4.28(1)		3.918(5)
Cs(2)-Cl(6)	1/000	3.40(1)	K(1)	3.140(6)
Cs(2)-Cl(3)	6/001	3.42(1)		3.077(7)
Cs(2)-Cl(1)	4/011	3.42(1)		3.241(7)
Cs(2)-Cl(1)	6/011	3.43(1)		3.215(7)
Cs(2)-Cl(5)	3/000	3.58(1)		3.452(7)
Cs(2)-Cl(2)	6/011	3.63(1)		3.385(6)
Cs(2)-Cl(4)	1/000	3.66(1)		3.442(6)
Cs(2)-Cl(2)	7/000	3.72(1)		3.741(7)
Cs(3)-Cl(4)	6/001	3.37(1)	K(2)	3.173(7)
Cs(3)-Cl(2)	4/010	3.39(1)		2.996(7)
Cs(3)-Cl(5)	5/011	3.51(3)		3.220(6)
Cs(3)-Cl(1)	7/011	3.53(1)		3.367(6)
Cs(3)-Cl(1)	1/000	3.54(1)		3.434(6)
Cs(3)-Cl(6)	6/011	3.65(1)		3.466(7)
Cs(3) - Cl(3)	4/000	3.69(1)		3.186(8)
Cs(3)-Cl(3)	1/000	3.70(1)		4.006(7)

Coding of equivalent positions

1.	x, y, z	5	$\frac{1}{2} + x, \frac{1}{2} + y, z$
2	$\overline{x}, \overline{y}, \overline{z}$	6	$\frac{1}{2} - x, \frac{1}{2} - y, \overline{z}$
3.	$\overline{x}, y, \frac{1}{2} - z$	7	$\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$
4	$x, \bar{y}, \frac{1}{2} + z$	8	$\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z$
Cl(4) 1/00	1 means that	Cl(4)	is in position 1 trans-
lated b	y le		

structural with Rb_3BiBr_6 (14), and constitutes another allotropic form which does not appear in the $Cs_3BiCl_6-K_3BiCl_6$ equilibrium diagram (4). Annealing of this phase in a sealed quartz tube at 350°C (60°C below the phase II \rightleftharpoons phase III transition (Fig. 1)) resulted in a room-temperature X-ray powder spectrum identical to the Cs₃BiCl₆ monoclinic pattern. This orthorhombic form will be hereafter labeled phase IV. Its unit-cell parameters are a = 26.593(9), b =8.290(4), c = 13.129(7) Å, V = 2894 Å³ (Z =8) in the *Pmcn* space group (after *bca* permutation to facilitate comparison with the monoclinic phase II (Table I)). The structure of this phase was not redetermined and the atomic coordinates of Rb₃BiBr₆ were used in the representation (Fig. 3) (15).

The two structures, monoclinic (phase II) and orthorhombic (phase IV), essentially differ by the **a** parameter, which implies a modification in the relative disposition of BiCl₆ octahedra in these two cells with identical contents. The point groups 2/m (phase II) and mmm (phase IV) are subgroups of that of the prototype cubic phase m3m. A relation between all of these phases can be found by computing the Bi \cdots Bi distances and Bi-Bi-Bi angles) from the atomic coordinates. Possible transformation matrices can be written as

$$\begin{pmatrix} a_{c} \\ b_{c} \\ c_{c} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & 1 & -\frac{1}{4} \\ \frac{1}{4} & 0 & \frac{3}{4} \\ \frac{1}{4} & -1 & -\frac{1}{4} \end{pmatrix} \begin{pmatrix} a_{m} \\ b_{m} \\ c_{m} \end{pmatrix} \text{ and }$$

$$\begin{pmatrix} a_{c} \\ b_{c} \\ c_{c} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & 1 & -\frac{1}{3} \\ \frac{1}{4} & 0 & \frac{2}{3} \\ \frac{1}{4} & -1 & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} a_{o} \\ b_{o} \\ c_{o} \end{pmatrix}$$

where subscripts c, m, and o referring evidently to cubic, monoclinic and orthorhombic cells. Applying these operations, the pseudo-cubic cells are for Cs₃BiCl₆ (C2/c): a = 11.687, b = 10.691, c = 11.290, $\alpha = 88.30$, $\beta = 91.91$, $\gamma = 86.32$ (average a = 11.313 Å); for CsK₂BiCl₆ (C2/c): a = 11.067, b = 10.702, c = 10.748, $\alpha = 89.13$, $\beta = 91.28$, $\gamma = 87.48$ (average a = 10.839 Å); for Cs₃BiCl₆ (*Pmcn*): a = 11.498, b = 11.028, c = 11.452, $\alpha = 87.35$, $\beta = 92.51$, $\gamma = 87.12$ (average a = 11.326 Å). These values must be compared to the parameter a = 11.086(5) Å of cubic Cs₂KBiCl₆ (5). The inverse matrices, which describe the cubic \rightarrow

FIG. 3. Perspective drawing of Cs₃BiCl₆ (orthorhombic Pmcn).

monoclinic and the cubic \rightarrow orthorhombic transformations, can be written as

$$\begin{pmatrix} a_{\rm m} \\ b_{\rm m} \\ c_{\rm m} \end{pmatrix} = \begin{pmatrix} \frac{3}{2} & 1 & \frac{3}{2} \\ \frac{1}{2} & 0 & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} a_{\rm c} \\ b_{\rm c} \\ c_{\rm c} \end{pmatrix} \text{ and }$$

$$\begin{pmatrix} a_{\rm o} \\ b_{\rm o} \\ c_{\rm o} \end{pmatrix} = \begin{pmatrix} \frac{4}{3} & \frac{4}{3} & \frac{4}{3} \\ \frac{1}{2} & 0 & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} a_{\rm c} \\ b_{\rm c} \\ c_{\rm c} \end{pmatrix} .$$

These vectorial relations are illustrated in Fig. 4. With an ideal cubic cell parameter of 11.320 Å for Cs₃BiCl₆, we obtain $a_m =$ 26.547, $b_{\rm m} = 8.004$, $c_{\rm m} = 13.863$ Å, $\beta =$ 100.02°, and $a_0 = 26.141$, $b_0 = 8.004$, $c_0 =$ 13.863 Å. The differences from the experimental values arise from the extensive deformations produced by the substitution of one K by one Cs atom (or vice versa). Moreover, these relationships are only based on the Bi · · · Bi distances and do not take into account the rotations of the BiCl₆ octahedra, as compared to their primitive orientation in the cubic phase: clearly, this fact must be more precisely defined to understand the relationships between all of the phases.

Relations between Monoclinic, Orthorhombic, and Cubic Phases of Cs₃BiCl₆

Structures of halides of formulas $A_x B_y X_{3x}$ (ABX₃, $A_2 B X_6$, and $A_3 B_2 X_9$) are generally described as resulting from compact stacking of AX₃ layers, the B cations occupying totally or partially the octahedral sites defined by X atoms (16). Among the compounds containing isolated BX₆ anions, in elpasolite Cs₂KBiCl₆ cubic Fm3m, all of the octahedral sites are alternatively occupied

FIG. 4. Orthorhombic and monoclinic cells derived from the prototype cubic cell.

FIG. 5. Cubic Cs_2KBiCl_6 structure: (a) projection of the "three BiCl₆ layers"; (b) diagrammatic elevation.

by Bi³⁺ and K⁺ cations, whereas in K₂PtCl₆ half of the octahedral sites are occupied by Pt atoms. This last compound is also described as an antifluorine structure in which the nearly spherical complexe ions PtCl₆⁻ define "octahedral" and "tetrahedral" holes which can accommodate K⁺ cations (16). The first description assumes the existence of AX_3 layers which are planar, or very nearly so. The second one, considering the BX_6 octahedra as entities, can describe structures built of isolated octahedra, whatever their respective orientations, that is to say, even when the AX_3 layers are no longer definable.

In this manner, the cubic Fm3m prototype phase (Cs₂KBiCl₆) can be described as a compact stacking of "layers of closepacked octahedra (BiCl₆)," according to the *ABC* sequence characteristic of fcc structures, in the direction of a body diagonal of the cube (Figs. 5a and b). In such "layers," all of the octahedra have a threefold axis parallel to the stacking direction.

If we consider the monoclinic and orthorhombic phases, their common crystallographic axes \mathbf{b} and \mathbf{c} are both contained

in a (111) type plane of the cubic prototype phase (Fig. 4). Projections of these two structures along the direction normal to the (b, c) plane, which is the stacking direction of the octahedra layers, show the existence of two types of layers: (i) layers similar to those observed in the cubic phase, containing only octahedra viewed along a threefold axis (which will be labeled OIII hereafter) (Figs. 6a and 7a); (ii) layers containing octahedra viewed along a twofold axis (labeled OII) (Figs. 6b and 7b), and oriented in two manners in the layer plane. These octahedra are obtained by a 45° rotation of an OIII octahedron around two of its three fourfold axes (Fig. 8). Lack of the third possible orientation is probably due to steric hindrance. Although the OII layers are identical in phases II and IV, the OIII layers are slightly different. The rows of octahedra parallel to c are all identical in phase II and also identical to the rows of the cubic phase (Figs. 5a and 6a). However, phase IV presents an alternance of two types of rows, differing by a rotation of the octahedra by about 60° (Fig. 7a). The structures of phases II (C2/c) and IV (Pmcn) can then be

FIG. 6. BiCl₆ layers in monoclinic Cs₃BiCl₆ and CsK₂BiCl₆: (a) OIII layer; (b) OII layer; (c) diagrammatic elevation of monoclinic CsK₂BiCl₆, 12-layer sequence of BiCl₆ layers; (d) cationic disposition between 3 BiCl₆ layers.

FIG. 7. Orthorhombic Cs_3BiCl_6 structure: (a) OIII layer; (b) OII layer; (c) 4-layer sequence of $BiCl_6$ layers.

FIG. 8. 45° rotation of an octahedron around its fourfold axes.

described by an alternation of layers OII and OIII stacked along the direction normal to the (**b**, **c**) plane. There is a succession of four layers in the case of phase IV (Fig. 7c) and of twelve layers in phase II (Fig. 6c). This representation in "layers of close-packed octahedra" displays the filiation between the phases stable at room temperature and the prototype phase stable at high temperature.

Despite the different stacking sequences (3, 4, or 12 layers), the alkaline cation sites are identical in all structures: they fill the octahedral and tetrahedral holes created between the BiCl₆ octahedra. For example, in phase II, Cs(1) is in a tetrahedral site constituted by three *OIII* and one *OII* (Fig. 9a); Cs(3) is also in a tetrahedral hole, but built with three *OII* and one *OIII* (Fig. 9b), whereas Cs(2) lies in an octahedral hole

(Fig. 9c). The different orientations of these octahedra explain the variations in the number of coordinating Cl atoms about cations occupying similar sites: 11 around Cs(1), but only 8 around Cs(3) (Table IV).

Metric relations between phases II and IV of Cs_3BiCl_6 , phase II' (CsK_2BiCl_6) and the cubic phase (Cs_2KBiCl_6) are summarized in Table V, using the pseudohexagonal cells, where the c axis has been chosen the stacking direction in order to make the comparison easier.

The structure of phase III, which is intermediate between phase II stable at ambient temperature and the prototype phase, is unknown at present. It is therefore impossible to describe the complete transition sequences. Nevertheless, by comparison of Figs. 5b and 6c, it is obvious that the relative disposition of the octahedra layers remains unchanged, but some *OII* must be

FIG. 9. Cationic surroundings in monoclinic Cs_3 BiCl₆: (a) three *OIII* and one *OII* around Cs(1); (b) three *OII* and one *OIII* around Cs(3); (c) three *OIII* and three *OII* around Cs(2).

FIG. 10. Monoclinic K_3MoCl_6 structure: (a) cationic disposition between 3 MoCl₆ layers; (b) 6-layer sequence of MoCl₆ layers.

rotated to OIII; displacive phase transitions would thus be expected.

Generalization to A_3MX_6 , A_2BMX_6 , and A_2MX_6 Compounds

It is possible to compare the Cs₃BiCl₆ phases II and IV crystal structures with other compounds of similar formulas. For example, K₃MoCl₆ has been described (17) in a monoclinic cell $P2_1/a$ (a = 12.160, b =7.534, c = 12.731 Å, $\beta = 108.66^{\circ}$). A projection of this structure along the normal to the (**a**, **b**) plane reveals an alternation of *OIII* and *OII* layers with a six-layer sequence (Figs. 10a and b).

Cryolite Na₃AlF₆ has the monoclinic symmetry $P2_{1/n}$ (18) (a = 5.46, b = 5.61, c = 7.80 Å, $\beta = 90.11^{\circ}$). The similarity of this cell to that of cubic elpasolite (19) implies

TABLE V

PSEUDO-HEXAGONAL CELLS IN CS-K-BI MIXED CHLORIDES: PARAMETERS (Å AND °), L NUMBER OF BICI₆ LAYERS, AND d INTERLAYER DISTANCE

	а	ь	с	γ(°)	L	d
Cs2KBiCl6 (Fm3m)	15.678ª	15.6784	19.20	120	3	6.40
Cs ₃ BiCl ₆ (Pmcn)	15.58	15.53	26.593	122.3	4	6.65
Cs ₃ BiCl ₆ (C2/c)	16.50	15.50	78.894	122.2	12	6.66
CsK2BiCl6 (C2/c)	15.60	15.05	75.96	121.2	12	6.33

a Doubled parameters.

that [2a + c] is the stacking direction for a three-layer disposition; in each layer, the AlF₆ octahedra exhibit a "rotational distortion," as termed by (20) (Fig. 11).

We have gathered in Table VI some significant examples of compounds with general formulas A_3MX_6 , A_2BMX_6 , and A_2MX_6 , where the anionic network consists of isolated MX_6 octahedra, as in the compounds that we have studied. These examples are illustrated in Fig. 12. In Table VI, we have

FIG. 11. Orientation of the AlF₆ octahedra in cryolite Na_3AlF_6 .

FIG. 12. (a) 3-layer sequence and cationic disposition in K_2LiAIF_6 . (b) 6-layer sequence and cationic disposition in Cs_2NaCrF_6 . (c) 3-layer sequence and cationic disposition in K_2TeBr_6 . (d) 2-layer sequence and cationic disposition in $LiCaAIF_6$.

	C	Marcalas	Sites o	ccupied	
Compound	Space group	of layers	Octahedral	Tetrahedral	References
Cs2KBiCl6	Fm3m	3L	IK	2Cs	(3)
K ₂ LiAlF ₆	P3m1	3L	1Li/3,2K/6	2Li/3,4K/6	(21, 22)
Cs ₂ NaCrF ₆	$R\overline{3}m$	6L	1Cs	1Cs,1Na	(23)
CsK2BiCl6	C2/c	12 <i>L</i>	IK	1K,1Cs	<i>(a)</i>
(NH ₄) ₃ FeF ₆	Fm3m	3L	1NH4	2NH ₄	(24)
Na ₃ AlF ₆	$P2_1/n$	3L	1Na	2Na	(18)
Ca ₃ UO ₆	$P2_1$	3L	1Ca	2Ca	(25)
Cs ₃ BiCl ₆	Pnma	4 <i>L</i>	1Cs	2Cs	$(^{a}, 14)$
K3MoCl6	$P2_1/a$	6L	١K	2 K	(17)
Cs3BiCl6	C2/c	12L	1Cs	2Cs	(^{<i>u</i>})
K ₂ PtCl ₆	Fm3m	3 <i>L</i>		2K	(26)
K ₂ TeBr ₆	$P2_1/n$	3 <i>L</i>		2K	(27)
Cs ₂ BkCl ₆	P63mc	2 <i>L</i>	1Cs	1Cs	(28)
LiCaAlF ₆ ^b	$P\overline{3}1c$	2L	1Ca	"1Li"	(29)

TABLE VI

^a This work.

^b A borderline case in this representation as the Li⁺ cation and the central Al atom of the AlF₆ octahedron are located at the same altitude (Fig. 12e).

voluntarily omitted all the structures resulting from slight distortions of a cubic Fm3mphase, which are evidently three-layer structures: this is the case of all of the tetragonal phases in which the c/a ratio is close to 1 or 1.414 (30–39). It must be pointed out that, in each family the most symmetrical phases pertain to the m3mpoint group, and that all of the others belong to subgroups of m3m (except Cs₂BkCl₆).

Some compounds containing only Li^+ or Na⁺ cations cannot be described by using the notion of "layers of close-packed octahedra." The small size of these cations enables them to occupy centers of X_6 octahedra and therefore, it is no longer necessary to use sites between the MX_6 layers. This is the case for Li₃AlF₆ (*Pna2*₁) (40), Li₃VF₆ (*C2/c*) (41), Na₂ScF₆ (*P32*₁) (42), and Li₂ MoF₆ (*P42*₁2) (43). Nevertheless, in most cases it is possible in this way to describe, and rationally explain, many crystal structures which seem at first sight to be completely unrelated.

Acknowledgments

The authors are indebted to the referees of the journal for their enlightening suggestions.

References

- 1. R. SCHWARTZ, S. WATKINS, C. O'CONNOR, AND R. CARLIN, J. Chem. Soc. Faraday Trans. 2 72, 565 (1976).
- 2. G. MEYER AND E. DIETZEL, Rev. Chim. Min. 16, 189 (1979).
- 3. B. V. BEZNOSIKOV AND S. V. MISYUL, Sov. Phys. Crystallogr. 23, 346 (1978).
- 4. P. BARBIER, M. DRACHE, G. MAIRESSE, AND J. RAVEZ, Ferroelectrics 55, 113 (1984).
- 5. P. BARBIER, M. DRACHE, G. MAIRESSE, AND J. RAVEZ, J. Solid State Chem. 42, 130 (1982).
- R. VON DER MÜHL, J. RAVEZ, P. HAGENMULLER, P. BARBIER, M. DRACHE, AND G. MAIRESSE, Solid State Commun. 43, 797 (1982).
- 7. L. R. MORSS AND W. R. ROBINSON, Acta Crystallogr. Sect. B 28, 653 (1972).
- 8. N. WALKER AND D. STUART, Acta Crystallogr. Sect. A 39, 158 (1983).
- 9. G. NOWOGROCKI, unpublished program, 1985.
- D. T. CROMER AND J. T. WABER, Acta Crystallogr. 18, 104 (1965).

- D. T. CROMER AND D. LIBERMAN, J. Chem. Phys. 53, 1891 (1970).
- 12. F. PELLE, B. BLANZAT, AND B. CHEVALIER, Solid State Commun. 49, 1089 (1984).
- S. B. STEPINA, I. V. VLASOVA, N. P. SOKOLOVA, AND V. E. PLYUSHCHEV. Russ. J. Inorg. Chem. 13, 1473 (1968).
- 14. F. LAZARINI, Acta Crystallogr. B34, 2288 (1978).
- C. K. JOHNSON, Ortep Report ORNL-3794, Oak Ridge National Laboratory, Tennessee, 1965.
- A. F. WELLS, "Structural Inorganic Chemistry," 3rd ed., Clarendon Press, Oxford, 1962.
- 17. Z. AMILIUS, B. VAN LAAR, AND H. M. RIETVELD, Acta Crystallogr. Sect. B 25, 400 (1969).
- NARAY-SZABO AND K. SASVARI, Z. Kristall. 99, 27 (1938).
- 19. E. G. STEWARD AND H. P. ROOKSBY, Acta Crystallogr. 6, 49 (1953).
- K. S. ALEKSANDROV AND S. V. MISYUL, Sov. Phys. Crystallogr. 26, 612 (1981).
- 21. H. G. F. WINKLER, Acta Crystallogr. 7, 33 (1954).
- A. TRESSAUD, J. DARRIET, P. LAGASSIE, J. GRANNEC, AND P. HAGENMULLER, Mat. Res. Bull. 19, 983 (1984).
- D. BADEL AND R. HAEGELE, J. Solid State Chem. 18, 39 (1976).
- 24. V. CAGLIOTTI AND G. GIACOMELLO, *Naturwiss*. **26**, 317 (1938).
- B. O. LOOPSTRA AND H. M. RIETVELD, Acta Crystallogr. Sect. B 25, 787 (1969).
- F. J. EWING AND L. PAULING, Z. Kristall. 68, 223 (1928).
- 27. I. D. BROWN, Can. J. Chem. 42, 2758 (1964).

- L. R. MORSS AND J. FUGER, Inorg. Chem. 8, 1433 (1969).
- W. VIEBAHN, Z. Anorg. Allg. Chem. 386, 335 (1971).
- H. BODE AND E. VOSS, Z. Anorg. Allg. Chem. 290, 1 (1957).
- 31. G. BLASSE, J. Inorg. Nucl. Chem. 27, 993 (1965).
- G. MEYER AND H. C. GAEBELL, Z. Naturforsch.
 33, 1476 (1978).
- 33. G. MEYER AND E. DIETZEL, Rev. Chim. Min. 16, 189 (1979).
- 34. W. ABRIEL, Mat. Res. Bull. 17, 1341 (1982); 18, 1419 (1983); 19, 313 (1984).
- J. SETTER AND R. HOPPE, Z. Anorg. Allg. Chem. 423, 125 (1976).
- W. ABRIEL AND J. IHRINGER, J. Solid State Chem. 52, 274 (1984).
- A. TRESSAUD, J. PORTIER, S. SHEARER-TURRELL, J. L. DUPIN, AND P. HAGENMULLER, J. Inorg. Nucl. Chem. 32, 2179 (1970).
- R. NEVALD, F. W. FOSS, O. V. NIELSEN, H. D. Amberger, and R. D. Fischer, Solid State Commun. 32, 1223 (1979).
- 39. S. KAIROUN, J. M. DANCE, J. GRANNEC, G. DEMAZEAU, AND A. TRESSAUD, *Rev. Chim. Min.* 20, 871 (1983).
- 40. J. H. BURNS, A. C. TENNISSEN, AND G. D. BRUN-TON, Acta Crystallogr. Sect. B 24, 225 (1968).
- 41. W. MASSA, Z. Kristall. 153, 201 (1980).
- 42. A. ZALKIN, J. D. FORRESTER, AND D. H. TEMPLE-TON, Acta Crystallogr. 17, 1408 (1964).
- 43. G. BRUNTON, Mat. Res. Bull. 6, 555 (1971).